

Embedded Software: Opportunities and Challenges

Dr. Janos Sztipanovits, DARPA/ITO
Dr. Shankar Sastry, Univ. of Calif. Berkeley
& formerly DARPA/ITO

Embedded Software: Depth of

Impact

Evolution of Avionics Systems:

Federated Avionics

100 MB **Integrated Avionics**

INTEGRATED SYSTEMS

1 MB

FEDERATED SUBSYSTEMS

- Functionally Integrated Data Processing
- -NAV/WD/Air Data Sensors
- -Flight Control
- Beam Steering Sensors
- •Fly By Wire
- Dedicated Digital Processing
- Crew-Assisted Operations
- Weapon Dolin
- Automated TF/TA
- EW Response

Aircraft-Wide Information Integration

- Sensors/Stores/ Vehicle/ Propulsion
- Modular Electronics
- Massive Data Bases
- Terrain, Threat
- Digital Sensor Processing
 - Sensor Fusion
- Hyperspe and Imaging
- .cgrated Diagnostics/
- System Fault Tolerance System Data Security
- Limited UAV Autonomy

Advanced Avionics

1 GB

SYSTEM of SYSTEMS

- Platform Exploitation of Global Information
- Information Maing
- At-A-Distand Reconfiguration
- Autonomo s Vehicle **Emphasis**
- Air & pace
- •Air C ew/ Ground Crew Mor toring & Management
- utomated Functions
- ATR (Multi-Sensor)
- Failure Prognostics
- Route/ Sensor/ Weapon/ Vehicle Coordination
- Bistatic Sensing (Air/ Space)
- Threat Evasion

Independent Avionics

64 KB

DEDICATED SUBSYSTEMS

- Digital Fire Control/NAV
- PT-PT Wiring
- Mechanically Controlled Sensors/FLT Controls/ **Displays**
- Crew-Dominated Operation

1950's - 60's 1958

1970's - 80's

1990's - 00's

2000 -Source: AFRL 2

Embedded Software: Breadth of Impact

- ◆ DoD (from avionics to micro-robots)
 - Essential source of new capabilities
 - Largest, most complex systems
- Automotive (drive-by-wire)
 - Key competitive element in the future
 - Increasing interest but low risk taking
- Consumer Electronics (from mobile phones to TVs)
 - Problem is generally simpler
 - US industry is strongly challenged
- Plant Automation Systems
 - Limited market growth, conservative approach

Overview

Impacts	Development Environments			Execution
Unique Challenges	Representation	Verification and Validation	Synthesis and Generation	Frameworks
Physicality	Languages System-Level Modeling - Domain Specific - Aspect-Oriented	Integrated Modeling - Hybrid modeling - Model integration	Generative Programming - Model-based - Multi-target - Meta-generators	Models of Computation - RT support for hybrid MOC-s - Integrated software/system frameworks
Constrains and Change	Modeling Tools - Meta- programmable - Consistency management	Application Generation - New hybrid analysis - Constraint-based synthesis		Adaptive execution frameworks, middleware - Decoupling via over-design - Embeddable synthesis and generation
Variable Structure	Design Frameworks - Property guarantees by frameworks - Orthogonalization by over-design		Framework Composition - Middleware for coordination - Customization	Reflection and runtime adaptationProbabilistic models

Theme 1: Physicality

Embedded software: defines physical behavior of a complex nonlinear device

Embedded System: a physical process with dynamic, fault, noise, reliability, power, size characteristics

Embedded Software: designed to meet required physical characteristics

Primary challenge: How to design software to achieve required physical behavior?

Interactions, interactions,...

Controller Dynamics

Embedded Software

- control law
- tolerated error, stability
- sampling rate
- limit-cycle oscillation
- loop delay
- noise

- HW/SW architecture
- Data types selection
- Scheduling policy,...
- Numeric accuracy
- Latency
- Jitter

Why Is this a Problem?

We have focused on functional composition...

But cross-cutting physical constraints weaken or destroy composability

Theme 2:

Constraints and Change

Source of change: environment, requirements

Hard Problem: system-wide constraints accumulate in software

Effects of changes need to propagated by tracking constraints

Flexibility is essentially a **SYSTEM-WIDE CONSTRAINT MANAGEMENT PROBLEM**

Theme 3: Dealing With Dynamic Structures

A new category of systems:

Embedding +

Distribution +

Coordination

Why should we work on this?

- Tremendous progress in MEMS, photonics, communication technology: we need to build systems now from these.
- Identified applications with very high ROI: strong application pull
- Almost total lack of design theory technology: the problem is extremely hard.

Networked Embedded Systems:

Examples

MEMS Actuators for Vortex Control (UCLA, CalTech)

- Number of nodes: 10⁴
- Loop frequency: 1 KHz
- Coordination frequency: 10Hz
- Geometric size: 30m.

mechanical structure

Pico Satellite Constellations (Aerospace Corporation)

- Number of nodes: 10² 10³
- Loop frequency: 1-2 KHz
- Coordination frequency: 1Hz
- Geometric size: 1-1000km

Key Integrating Element: Interconnect Fabric Element (IFM)

Unified Network

Unified Processing Network For Avionics

- Processing nodes: > 3*10^3
- Link Bandwidth: 2GHz
- Aggregate Bandwidth: >10^12
- Industry Standard Protocol

Need: Middleware for Coordination and Distribution

Distribution:

- heterogeneous, simple components (10^2-10^5)
- changing interconnection topology
- embedded synthesis for dynamic distribution, reconfiguration

Coordination:

- global **coordination** of local interactions
- consistency of globally relevant information
- requirements are determined by locality of physics

DARPA Embedded Software Program Suite

- 1. Software Enabled Control FY99-03
- 2. Model-Based Integration of Embedded Software FY00-04
- 3. Program Composition of Embedded Software FY00-04
- 4. Networked Embedded Software Technology FY01-05

Future of Embedded Software

- One of the fundamentally new, tremendously expanding areas of computing.
- (a) No matter which walk of life you choose, you end up writing software...
 - (b) No matter how great computer scientist you are if you do embedded software you will not get away without learning physics and engineering.
- Answering the challenges requires nothing less than the re-integration of physical and information sciences.

Thematic Areas for ITO

